2007 Vol. 9, No. 8 1529–1532

Stereochemical and Skeletal Diversity Employing Pipecolate Ester Scaffolds

Yu Chen, John A. Porco, Jr.,* and James S. Panek*

Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Metcalf Center for Science and Engineering, 590 Commonwealth Avenue, Boston University, Boston, Massachusetts 02215

porco@bu.edu; panek@bu.edu

Received February 7, 2007

ABSTRACT

MeO₂C 6
$$\stackrel{\mathsf{N}}{\mathsf{P}}$$
 $\stackrel{\mathsf{Me}}{\mathsf{P}}$ $\stackrel{\mathsf{Me}}{\mathsf{N}}$ $\stackrel{\mathsf{Me}}{\mathsf{N}}$ $\stackrel{\mathsf{Me}}{\mathsf{N}}$ $\stackrel{\mathsf{Me}}{\mathsf{N}}$ $\stackrel{\mathsf{N}}{\mathsf{N}}$ $\stackrel{\mathsf{N}}{\mathsf{N}}$

The stereocontrolled synthesis of pyridooxazinones by Mg(OTf)₂-promoted epoxide ring-opening with use of chiral pipecolates as nucleophiles is described. Pyridooxazinone products derived from azido-epoxides can be further rearranged to seven-membered pyridodiazepinones by azide reduction. The sequence of functional group interconversions generates diversity through topological and stereochemical variation.

The development of reaction methodology that allows rapid access to structurally and stereochemically diverse frameworks and scaffolds plays an important role in diversity-oriented synthesis (DOS). Accordingly, methodology to access new chemotypes in a stereocontrolled manner would be a useful contribution to this area. Bicyclic alkaloids such as quinolizidines and indolizidines incorporating a nitrogen at the ring junction have a rich and diverse history as pharmacological agents, and present an opportunity to create DOS strategies loosely based on the natural product scaffolds.

This Letter describes the assembly of stereochemically and topologically diverse six- and seven-membered pyridoox-azinones and pyridodiazepinones, respectively. The work also illustrates the use of our amino-functionalized silane reagents^{4a} in the context of DOS. The approach makes efficient use of

(1) For lead references on DOS, see: (a) Schreiber, S. L. Science **2000**, 287, 1964–1969. (b) Itami, K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei, T.; Yoshida, J. J. Am. Chem. Soc. **2001**, 123, 11577–11585. (c) Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. **2004**, 43, 46–58. (d) Arya, P.; Joseph, R.; Gan, Z.; Rakic, B. Chem. Biol. **2005**, 12, 163–180.

our annulation strategy that provides enantioenriched pipecolates **3** and **6** as stereochemically diverse building blocks.⁴ An epoxide opening, lactonization, and ring expansion sequence highlight a series of functional group interconver-

(2) (a) Wipf, P.; Stephenson, C. R. J.; Walczak, M. A. A. *Org. Lett.* **2004**, *6*, 3009–3012. (b) Gan, Z.; Reddy, P. T.; Quevillon, S.; Couve-Bonnaire, S.; Arya, P. *Angew. Chem., Int. Ed.* **2005**, *44*, 1366–1368. (c) Kesavan, S.; Su, Q.; Shao, J.; Porco, J. A., Jr.; Panek, J. S. *Org. Lett.*, **2005**, *7*, 4435–4438. (d) Beeler, A. B.; Acquilano, D. E.; Su, Q.; Yan, F.; Roth, B. L.; Panek, J. S.; Porco, J. A., Jr. *J. Comb. Chem.* **2005**, *7*, 673–681. (e) Adriaenssens, L. V.; Austin, C. A.; Gibson, M.; Smith, D.; Hartley, R. C. *Eur. J. Org. Chem.* **2006**, *22*, 4998–5001. (f) Dandapani, S.; Lan, P.; Beeler, A. B.; Beischel, S.; Abbas, A.; Roth, B. L.; Porco, J. A., Jr.; Panek, J. S. *J. Org. Chem.* **2006**, *71*, 8934–8945. (g) Fitzmaurice, R. J.; Etheridge, Z. C.; Jumel, E.; Woolfson, D. N.; Caddick, S. *Chem. Commun.* **2006**, *46*, 4814–4816. (h) Freifeld, L.; Holtz, E.; Dahmann, G.; Langer, P. *Eur. J. Org. Chem.* **2006**, *14*, 3251–3258. (i) Beeler, A. B.; Su, S.; Singleton, C. A.; Porco, J. A., Jr. *J. Am. Chem. Soc.* **2007**, *129*, 1413–1419. (j) Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. *J. Am. Chem. Soc.* **2007**, *129*, 1020–1021.

(3) (a) Garraffo, H. M.; Caceres, J.; Daly, J. W.; Spande, T. F. J. Nat. Prod. 1993, 56, 1016–1038. (b) Fantauzzi, P. P.; Yager, K. M. Tetrahedron Lett. 1998, 39, 1291–1294. (c) Jiang, W.; Alford, V. C.; Qiu, Y.; Bhattacharjee, S.; John, T. M.; Haynes-Johnson, D.; Kraft, P. J.; Lundeen, S. G.; Sui, Z. Bioorg, Med. Chem. 2004, 12, 1505–1515. (d) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556–1575.

sions developed to access the target pyridooxazinone and pyridodiazepinone ring systems.

The pipecolate scaffolds were constructed by using [4+2]-annulation of aminosilanes *syn-1* and *anti-4* with *m*- or *p*-bromobenzaldehyde providing both 2,6-*cis*- and 2,6-*trans*-tetrahydropyridines 2 and 5 (Scheme 1).^{4a} Diversification is

established through variation in stereochemistry as well as positional variation of the aryl bromide. To avoid epimerization of the C6 stereocenter,⁵ annulation products **2** and **5** (bearing a vinyl glycine-like moiety) were protected as trifluoroacetamides before hydrogenation of the tetrahydropyridine ring. Removal of the acetamide afforded the free secondary amines 2,6-*cis*-**3** and 2,6-*trans*-**6**.^{4a}

Initial experiments concerning epoxide ring-opening were carried out with 2,6-cis-pipecolate **3b** in an effort to prepare pyridooxazinone **7**.^{6,7} Following literature precedent, a number of different Lewis acid⁸ catalysts were evaluated for the ring-opening of both racemic and enantioenriched epoxides including 2-azidomethyl oxirane. Best results were obtained by using a catalytic amount of Mg(OTf)₂ with

pipecolate ester **3b** and epoxide (1.2 equiv) to provide the 2,6-*cis*-pyridooxazinone **7** in 16–20 h in good to excellent yields (Table 1). To our knowledge, the use of Mg(OTf)₂ to promote epoxide-ring opening has not been reported.¹⁰

Table 1. Mg(OTf)₂-Catalyzed Epoxide Ring-Opening of *cis*-Pipecolates

entry	R	isolate yield a
1	(R)-N ₃ -CH ₂ -	7a , 90%
2	$(S)-N_3-CH_2-$	7b , 92%

^a Isolated yield after purification by SiO₂ chromatography.

These conditions were then applied to 2,6-trans-6b with mixed results; in comparison to reactions of 2,6-cis-pipecolates, longer reaction time was required to achieve full conversion for epoxide opening. Furthermore, cyclization was not observed and only hydroxy-ester 8 was obtained illustrating a stereochemical dependency on the lactone formation step (Table 2). The acyclic intermediate 8 was isolated and

Table 2. Mg(OTf)₂-Catalyzed Epoxide Ring-Opening of *trans*-Pipecolates

entry	R	isolate yield a
1	(S)-N ₃ -CH ₂ -	9a , 80%
2	(R)-N ₃ -CH ₂ -	9b , 73%

^a Isolated yield after purification by SiO₂ chromatography.

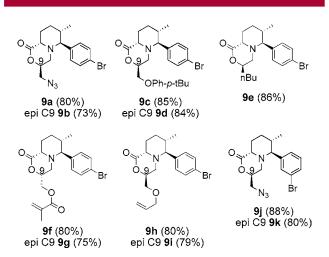
cyclized with PPTS¹¹ (6 mol %) at 100 °C for 10 h to give 2,6-*trans*-pyridooxazinone **9** as the major product with less than 5% of the C6 epimer as determined by ¹H NMR analysis of the crude reaction mixture. The lower reactivity observed

1530 Org. Lett., Vol. 9, No. 8, 2007

^{(4) (}a) Huang, H.; Spande, T. F.; Panek, J. S. *J. Am. Chem. Soc.* **2003**, *125*, 626–627. (b) See ref 2f.

^{(5) (}a) Agami, C.; Couty, F.; Daran, J.; Prince, B.; Puchot, C. *Tetrahedron Lett.* **1990**, *31*, 2889–2892. (b) Berkowitz, D. B.; McFadden, J. M.; Chisowa, E.; Semerad, C. L. *J. Am. Chem. Soc.* **2000**, *122*, 11031–11032.

⁽⁶⁾ Representative literature on similar bicyclic lactones: (a) Kim, Y. B.; Choi, E. H.; Keum, G.; Kang, S. B.; Lee, D. H.; Koh, H. Y.; Kim, Y. Org. Lett. 2001, 3, 4149–4152. (b) Agami, C.; Comesse, S.; Kadouri-Puchot, C. J. Org. Chem. 2002, 67, 2424–2428. (c) Pave, G.; Leger, J.-M.; Jarry, C.; Viaud-Massuard, M.-C.; Guillaumet, G. J. Org. Chem. 2003, 68, 1401–1408.


⁽⁷⁾ For epoxide opening of amino esters: (a) Lee, S.; Yi, K. Y.; Kim, S.-K.; Suh, J.; Kim, N. J.; Yoo, S.-E.; Lee, B. H.; Seo, H. W.; Kim, S.-O.; Lim, H. *Eur. J. Med. Chem.* **2003**, *38*, 459–471. (b) Babic, A.; Sova, M.; Gobec, S.; Pecar, S. *Tetrahedron Lett.* **2006**, *47*, 1733–1735.

^{(8) (}a) For activity and selectivity classification of Lewis acids, see: Kobayashi, S.; Busujima, T.; Nagayama, S. *Chem. Eur. J.* **2000**, *19*, 3491–3494.

Figure 1. Pyridooxazinones from *cis*-pipecolates. Isolated yields after purification by SiO₂ chromatography are given.

in the conversion of **8** to **9** may be a result of destablizing 1,3-diaxial interactions during the formation of the tetrahedral intermediate leading to pyridooxazinone **9**. Using this strategy, we have created a small array of 2,6-*cis*- and 2,6-*trans*-pyridooxazinones depicted in Figures 1 and 2, respec-

Figure 2. Pyridooxazinones from *trans*-pipecolates. Isolated yields after purification by SiO_2 chromatography are given.

tively. Making use of a range of chiral epoxides, both 2,6-cis- and 2,6-trans-tetrahydropyridine afforded the desired pyridooxazinones **7c-p** (Figure 1) and **9c-k** (Figure 2) in good to excellent yield.

Having succeeded in developing conditions to obtain pyridooxazinones via Mg(OTf)₂-catalyzed epoxide ring

opening with 2,6-cis- and 2,6-trans-methyl pipecolates, we next focused on the lactone-to-lactam ring expansion via azide reduction (Scheme 2).¹² Conversion of pyridooxazi-

Scheme 2. Pyridodiazepinone Formation via Ring Expansion of Aza-Pyridooxazinones^a

^aIsolated yields after purification by SiO₂ chromatography are given.

nones to the ring-expanded pyridodiazepinones was achieved by using the venerable Staudinger reaction.¹³ Accordingly, treatment of (S)-azido 2,6-cis-pyridooxazinone 7a with PS-TPP (polystyryl triphenylphosphine)¹⁴ in methanol at 80 °C (sealed tube, 12 h) provided the ring expansion product 2,6cis-pyridodiazepinone 10a in one pot via the intermediate lactone amine. 15,16 At temperatures exceeding 60 °C, 2,6trans-9a and 2,6-trans-9b epimerized at C6 to afford enantiomers of 2,6-cis-10b and 2,6-cis-10a. We have not established whether epimerization occurs during lactone or lactam formation. In contrast to PS-TPP, use of Ph₃P (1.5 equiv) in the solution phase allowed complete conversion to 11a and 11b without epimerization at temperatures below 60 °C. The sequences in Table 1 and Scheme 2 illustrate how subtle changes in the stereochemistry of the pipecolate ester building block provide the basis for variation of

Org. Lett., Vol. 9, No. 8, 2007

⁽⁹⁾ For the synthesis of enantioenriched 2-azidomethyloxirane, see: Spelberg, J. H. L.; Tang, L.; Kellogg, R. M.; Janssen, D. B. *Tetrahedron: Asymmetry* **2004**, *15*, 1095–1102.

⁽¹⁰⁾ Other less effective Lewis acids surveyed for epoxide ring opening include: Yb(OTf)₃, Yb(O-*i*Pr)₃, Sc(OTf)₃, LiClO₄, ZrCl₄, Zr(O-*i*Pr)₄, Mg-(ClO₄)₂, (*R*,*R*)-Co(Salen), B(C₆F₅)₃, LiNTf₂, NaH, [Rh(CO)₂Cl]₂, Sml₂-(THF)₂, Aliquat R336, Sm(O-*i*Pr)₃, La(O-*i*Pr)₃, Bi(OTf)₃·*n*H₂O, NaOMe, NaI, ZnCl₂.

⁽¹¹⁾ Miyashita, N.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem. 1977, 42, 3772–3774.

^{(12) (}a) Nyffeler, P. T.; Liang, C.; Koeller, K. M.; Wong, C. *J. Am. Chem. Soc.* **2002**, *124*, 10773–10778. (b) Pal, B.; Jaisankar, P.; Giri, V. S. *Synth. Commun.* **2004**, *34*, 1317–1323.

^{(13) (}a) Staudinger, H.; Meyer, J. *Helv. Chim. Acta* **1919**, 2, 635–644. (b) Staudinger, H.; Hauser, E. *Helv. Chim. Acta* **1921**, 4, 861–868.

⁽¹⁴⁾ Tunoori, A. R.; Dutta, D.; Georg, G. I. T. *Tetrahedron Lett.* **1998**, *39*, 8751–8754.

⁽¹⁵⁾ Azido lactones 7a and 7b were initially obtained from the reaction of (R)- and (S)-tosyl lactones with use of sodium azide. However, use of (R)- and (S)-2-azidomethyloxirane in ring openings provided both cis and trans lactones 7 and 9 in excellent yields.

^{(16) (}a) Zhang, W.; Mayer, J. P.; Hall, S. E.; Weigel, J. A. *J. Comb. Chem.* **2001**, *3*, 255–256. (b) Charette, A. B.; Boezio, A. A.; Janes, M. K. *Org. Lett.* **2000**, *24*, 3777–3779.

topology (*trans* and *cis* ring fusion) of pyridooxazinones 7 and 9 and pyridodiazepinones 10 and 11.

The efficiency of the ring expansion prompted us to investigate a one-pot synthesis of *N*-substituted pyridodiazepinones via Staudinger^{13a} reaction promoted with triphenylphosphine with the intent of expanding scaffold diversity. Unfortunately, a one-pot approach to *N*-substituted pyridodiazepinones was unsuccessful with use of the conditions optimized for pyridodiazepinones 10 and 11. The desired *N*-substituted pyridodiazepinones were not observed during attempted one-pot addition of NaBH₄ or NaBH₃CN in MeOH to a THF solution of the crude imine 12. However, the *N*-substituted pyridodiazepinone 14 could be prepared by using a two-step process that included isolation of the intermediate imine 12 and treatment with NaBH₃CN in MeOH at rt to give 14 in 90% yield (Scheme 3).

Scheme 3. N-Substituted Pyridodiazepinone Formation

Finally, a collection of pyridodiazepinones 14–22 bearing substitution of the lactam nitrogen was prepared. This series of scaffolds is shown in Figure 3, illustrating the versatility of the overall functional group interconversion sequence.

In conclusion, a reaction sequence employing Mg(OTf)₂-catalyzed epoxide opening with 2,6-cis- and 2,6-trans-methyl pipecolates, followed by lactone formation, has been developed to prepare functionalized pyridooxazinones. Azide reduction enabled ring expansion to seven-membered pyridodiazepinones. Further diversification was achieved by converting the intermediate aza-pyridooxazinones to secondary amines prior to pyridodiazepinone formation.¹⁷ Further

Figure 3. N-Substituted pyridodiazepinone scaffolds. Isolated yields after purification by SiO_2 chromatography are given.

studies concerning use of the pipecolate esters in library synthesis as well as biological evaluation of the pyridoox-azinone/pyridodiazepinone scaffolds are in progress and will be reported in due course.

Acknowledgment. Financial support was obtained from the NIGMS CMLD initiative (P50 GM067041, J.A.P., Jr.) and RO1 GM55740 (J.S.P.). The authors are grateful to Drs. Ping Lan, Sarathy Kesavan, and Aaron Beeler (Boston University) for helpful discussions. The authors also thank Dr. Christopher Singleton (CMLD-BU) for 2D NMR analysis.

Supporting Information Available: General experimental data and characterization data for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL070321G

1532 Org. Lett., Vol. 9, No. 8, 2007

⁽¹⁷⁾ The ultility of the arylbromide functionality in building blocks $\bf 3$ and $\bf 6$ has been established earlier on our studies of diketopiperazines; see ref 1f.